Physics IV
 ISI B.Math
 Backpaper Exam

Total Marks: 50
 Time : 3 hours
 Answer all questions

1.(Marks: $4+2+2=10)$
(a) Two photons each have energy E. They collide at an angle θ and create a particle of mass M. What is M ?
(b) Show that the sum of any two orthogonal spacelike vectors is spacelike.
(c) Show that a timelike vector and a null vector cannot be orthogonal.
2. (Marks: $\mathbf{4}+\mathbf{6}=\mathbf{1 0})$

A one dimensional harmonic oscillator of mass m has potential energy $V(x)=\frac{1}{2} m \omega^{2} x^{2}$. Consider the operators $a=\frac{1}{\sqrt{2 \hbar m \omega}}(m \omega x+i p)$ and $a^{\dagger}=\frac{1}{\sqrt{2 \hbar m \omega}}(m \omega x-i p)$

It is given that $a^{\dagger} \psi_{n}=\sqrt{n+1} \psi_{n+1}$ and $a \psi_{n}=\sqrt{n} \psi_{n-1}$, where ψ_{n} is a solution of the time independent Schrödinger equation with energy E_{n}
(a) Given that a lowest energy ground state exists such that $a \psi_{0}=0$, find the normalized ground state wave function ψ_{0}.
(b) Show that in the nth eigenstate of the harmonic oscillator, the average kinetic energy $<T>$ is equal to the average potential energy $\langle V\rangle$ (the Virial theorem). What is the lowest value of the average kinetic energy that a quantum harmonic oscillator can have? How does it contrast with the classical value?
3. (Marks: $2+4+4=10)$

A particle of mass m in the infinite square well $V(x)=0$ for $0 \leq x \leq a$ and $V(x)=\infty$ otherwise has as its initial wave function an even mixture of the first two stationary states

$$
\Psi(x, 0)=A\left[\psi_{1}(x)+\psi_{2}(x)\right]
$$

(a) Normalize $\Psi(x, 0)$
(b) Find $\Psi(x, t)$ and $|\Psi(x, t)|^{2}$. Express the latter as a sinusoidal function of time. To simplify the result, let $\omega=\pi^{2} \hbar / 2 m a^{2}$.
(c) Compute $\langle x\rangle$. Notice that it oscillates in time. What is the frequency of oscillation? What is the amplitude of oscillation ?

4. (Marks: 10)

For a certain system, the operator corresponding to the physical quantity A does not commute with the Hamiltonian. It has eigenvalues α_{1} and α_{2} corresponding to properly normalized eigenfunctions

$$
\begin{aligned}
& \phi_{1}=\frac{\left(u_{1}+u_{2}\right)}{\sqrt{2}} \\
& \phi_{2}=\frac{\left(u_{1}-u_{2}\right)}{\sqrt{2}}
\end{aligned}
$$

where u_{1} and u_{2} are properly normalized eigenfunctions of the Hamiltonian with eigenvalues E_{1} and E_{2}. If the system is in the state $\psi=\phi_{1}$ at time $t=0$, show that the expectation value of A at time t is

$$
<A>=\left(\frac{\alpha_{1}+\alpha_{2}}{2}\right)+\left(\frac{\alpha_{1}-\alpha_{2}}{2}\right) \cos \left(\frac{\left|E_{1}-E_{2}\right| t}{\hbar}\right)
$$

5. (Marks: $\mathbf{4}+\mathbf{6}=\mathbf{1 0})$
(a) Show that in one dimension, the wavefunction $\psi(x)$ that is a solution to the time independent Schrödinger equation can always be taken to be real.
(b) Consider three observables $\hat{A}, \hat{B}, \hat{C}$ If it is known that $[\hat{B}, \hat{C}]=\hat{A}$ and $[\hat{A}, \hat{C}]=\hat{B}$, show that $\Delta(A B) \Delta(C) \geq \frac{1}{2}\left(A^{2}+B^{2}\right)$ where $A^{2}, B^{2}=<\hat{A}^{2}>,<\hat{B}^{2}>$ respectively and $\Delta(A B)$ and $\Delta(C)$ denote the uncertainties in $\hat{A} \hat{B}$ and \hat{C} respectively.
